Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Silico Pharmacol ; 12(1): 26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596365

RESUMO

Aurora Kinase B belongs to the serine kinase family. It plays an essential role in cell division and participates in mitosis and chromatid segregation. Overexpression, polymorphism, and splicing variants in the protein lead to tumorigenesis, leading to cancer. Flavones belong to the class of flavonoids and are derived from plants and show anti-cancer activities. Fluoro flavones and their analogs are taken from the PubChem database, resulting in 3882 compounds which is 90% similar to the fluoro flavones. Lipinski's rule of five, REOS and PAINS drug-like filters were applied which resulted 2448 compounds. These compounds are docked with Aurora Kinase B using SP and XP modules of Glide software. The best binding scores for SP docking were - 9.153 kcal/mol for the compound with CID: 44298667, and XP docking was - 10.287 kcal/mol with CID: 101664315. Enrichment calculations were done using Aurora Kinase B's decoys to validate the docking result. The resulting R2 = 0.96 from enrichment calculations suggests that the docking protocol is valid. The SP and XP docking lead compounds and the Fluoro flavone were subjected to 100 ns MD simulation to probe the protein-ligand complex stability. Also, the binding free energies between the Aurora kinase B and lead compounds were computed by Prime MM/GBSA module. The result suggests that the lead compounds bind more strongly with Aurora Kinase B than the Fluoro flavone. These lead compounds can be further evaluated in vitro and in vivo and can be used as future novel drugs for the curation of cancer.

2.
J Biomol Struct Dyn ; : 1-20, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500246

RESUMO

Tropical calcific pancreatitis (TCP) is a juvenile form of non-alcoholic chronic pancreatitis seen exclusively in tropical countries. The disease poses a high risk of complications, including pancreatic diabetes and cancer, leading to significant mortality due to poor diagnosis and ineffective treatments. This study employed whole exome sequencing (WES) of 5 TCP patient samples to identify genetic variants associated with TCP. Advanced computational techniques were used to gain atomic-level insights into disease progression, including microsecond-scale long MD simulations and essential dynamics. In silico virtual screening was performed to identify potential therapeutic compounds targeting the mutant protein using the Asinex and DrugBank compound library. WES analysis predicted several single nucleotide variants (SNVs) associated with TCP, including a novel missense variant (c.T1802A or p.V601E) in the TLK2 gene. Computational analysis revealed that the p.V601E mutation significantly affected the structure of the TLK2 kinase domain and its conformational dynamics, altering the interaction profile between ATP and the binding pocket. These changes could impact TLK2's kinase activity and functions, potentially correlating with TCP progression. Promising lead compounds that selectively bind to the TLK2 mutant protein were identified, offering potential for therapeutic interventions in TCP. These findings hold great potential for future research.Communicated by Ramaswamy H. Sarma.

3.
Curr Mol Med ; 24(2): 264-279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36642883

RESUMO

BACKGROUND: Dietary chemicals and their gut-metabolized products are explored for their anti-proliferative and pro-cell death effects. Dietary and metabolized chemicals are different from ruminants such as goats over humans. METHODS: Loss of cell viability and induction of death due to goat urine DMSO fraction (GUDF) derived chemicals were assessed by routine in vitro assays upon MCF-7 breast cancer cells. Intracellular metabolite profiling of MCF-7 cells treated with goat urine DMSO fraction (GUDF) was performed using an in-house designed vertical tube gel electrophoresis (VTGE) assisted methodology, followed by LC-HRMS. Next, identified intracellular dietary chemicals such as ellagic acid were evaluated for their inhibitory effects against transducers of the c-Raf signaling pathway employing molecular docking and molecular dynamics (MD) simulation. RESULTS: GUDF treatment upon MCF-7 cells displayed significant loss of cell viability and induction of cell death. A set of dietary and metabolized chemicals in the intracellular compartment of MCF-7 cells, such as ellagic acid, 2-hydroxymyristic acid, artelinic acid, 10-amino-decanoic acid, nervonic acid, 2,4-dimethyl-2-eicosenoic acid, 2,3,4'- Trihydroxy,4-Methoxybenzophenone and 9-amino-nonanoic acid were identified. Among intracellular dietary chemicals, ellagic acid displayed a strong inhibitory affinity (-8.7 kcal/mol) against c-Raf kinase. The inhibitory potential of ellagic acid was found to be significantly comparable with a known c-Raf kinase inhibitor sorafenib with overlapping inhibitory site residues (ARG450, GLU425, TRP423, VA403). CONCLUSION: Intracellular dietary-derived chemicals such as ellagic acid are suggested for the induction of cell death in MCF-7 cells. Ellagic acid is predicted as an inhibitor of c-Raf kinase and could be explored as an anti-cancer drug.


Assuntos
Antineoplásicos , Dimetil Sulfóxido , Animais , Humanos , Ácido Elágico/farmacologia , Ácido Elágico/química , Simulação de Acoplamento Molecular , Cabras , Antineoplásicos/farmacologia
4.
J Biomol Struct Dyn ; 42(1): 495-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974974

RESUMO

The nosocomial infection outbreak caused by Pseudomonas aeruginosa remains a public health concern. Multi-drug resistant (MDR) strains of P. aeruginosa are rapidly spreading leading to a huge mortality rate because of the unavailability of promising antimicrobials. MurG glycotransferase [UDP-N-acetylglucosamine-N-acetylmuramyl (pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase] is located at the plasma membrane and plays a key role in murein (peptidoglycan) biosynthesis in bacteria. Since MurG is required for bacterial cell wall synthesis and is non-homologous to Homo sapiens; it can be a potential target for the antagonist to treat P. aeruginosa infection. The discovery of high-resolution crystal structure of P. aeruginosa MurG offers an opportunity for the computational identification of its prospective inhibitors. Therefore, in the present study, the crystal structure of MurG (PDB ID: 3S2U) from P. aeruginosa was selected, and computational docking analyses were performed to search for functional inhibitors of MurG. IMPPAT (Indian medicinal plants, phytochemicals and therapeutic) phytomolecule database was screened by computational methods with MurG catalytic site. Docking results identified Theobromine (-8.881 kcal/mol), demethoxycurcumin (-8.850 kcal/mol), 2-alpha-hydroxycostic acid (-8.791 kcal/mol), aurantiamide (-8.779 kcal/mol) and petasiphenol (-8.685 kcal/mol) as a potential inhibitor of the MurG activity. Further, theobromine and demethoxycurcumin were subjected to MDS (molecular dynamics simulation) and free energy (MM/GBSA) analysis to comprehend the physiological state and structural stability of MurG-phytomolecules complexes. The outcomes suggested that these two phytomolecules could act as most favorable natural hit compounds for impeding the enzymatic action of MurG in P. aeruginosa, and thus it needs further validation by both in vitro and in vivo analysis. HIGHLIGHTSThe top phytomolecules such as theobromine, demethoxycurcumin, 2-alpha-hydroxycostic acid, aurantiamide and petasiphenol displayed promising binding with MurG catalytic domain.MurG complexed with theobromine and demethoxycurcumin showed the best interaction and stable by MD simulation at 100 ns.The outcome of MurG binding phytomolecules has expanded the possibility of hit phytomolecules validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecção Hospitalar , Pseudomonas aeruginosa , Humanos , Teobromina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
5.
Int J Biol Macromol ; 253(Pt 8): 127567, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866569

RESUMO

Visceral leishmaniasis (VL) is the most lethal among all leishmaniasis diseases and remains categorized as a neglected tropical disease (NTD). This study aimed to develop a peptide-based multi-epitope vaccine construct against VL using immunoinformatics methodologies. To achieve this, four distinct proteins were screened to identify peptides consisting of 9-15 amino acids with high binding affinity to toll-like receptors (TLRs), strong antigenicity, low allergenicity, and minimal toxicity. The resulting multi-epitope vaccine construct was fused in a tandem arrangement with appropriate linker peptides and exhibited superior properties related to cytotoxic T lymphocytes (CTLs), helper T lymphocytes (HTLs), and B-cell epitopes. Subsequently, a three-dimensional (3D) model of the vaccine construct was generated, refined, and validated for structural stability and immune response capabilities. Molecular docking and simulations confirmed the vaccine construct's stability and binding affinities with TLRs, with TLR4 displaying the highest binding affinity, followed by TLR2 and TLR3. Additionally, simulations predicted robust cellular and humoral antibody-mediated immune responses elicited by the designed vaccine construct. Notably, this vaccine construct includes proteins from various pathways of Leishmania donovani (LD), which have not been previously utilized in VL vaccine design. Thus, this study opens new avenues for the development of vaccines against diverse protozoan diseases.


Assuntos
Leishmaniose Visceral , Vacinas , Humanos , Leishmaniose Visceral/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/química , Peptídeos , Epitopos de Linfócito B , Biologia Computacional/métodos , Vacinas de Subunidades
6.
J Cancer Prev ; 28(3): 115-130, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37830116

RESUMO

There is a lack of evidence regarding the use of betel quid (BQ) and its potential contribution to oral cancer. Limited attention has been directed towards investigating the involvement of BQ-derived organic acids in the modulation of metabolic-epigenomic pathways associated with oral cancer initiation and progression. We employed novel protocol for preparing saliva-amalgamated BQ filtrate (SABFI) that mimics the oral cavity environment. SABFI and saliva control were further purified by an in-house developed vertical tube gel electrophoresis tool. The purified SABFI was then subjected to liquid chromatography-high resolution mass spectrometry analysis to identify the presence of organic acids. Profiling of SABFI showed a pool of prominent organic acids such as citric acid. malic acid, fumaric acid, 2-methylcitric acid, 2-hydroxyglutarate, cis-aconitic acid, succinic acid, 2-hydroxyglutaric acid lactone, tartaric acid and ß-ketoglutaric acid. SABFI showed anti-proliferative and early apoptosis effects in oral cancer cells. Molecular docking and molecular dynamics simulations predicted that SABFI-derived organic acids as potential inhibitors of the epigenetic demethylase enzyme, Ten-Eleven Translocation-2 (TET2). By binding to the active site of α-ketoglutarate, a known substrate of TET2, these organic acids are likely to act as competitive inhibitors. This study reports a novel approach to study SABFI-derived organic acids that could mimic the chemical composition of BQ in the oral cavity. These SABFI-derived organic acids projected as inhibitors of TET2 and could be explored for their role oral cancer.

7.
Comput Biol Chem ; 106: 107912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454399

RESUMO

COVID-19 shook the world during the pandemic, where the climax it reached was vaccine manufacturing at an unfathomable pace. Alternative promising solutions to prevent infection from SARS-CoV-2 and its variants will remain crucial in the years to come. Due to its key role in viral replication, the major protease (Mpro) enzyme of SARS-CoV-2 can be an attractive therapeutic target. In the present work, natural terpenoids from mangrove medicinal plant Xylocarpus moluccensis (Lam.) M. Roem. were screened using computational methods for inhibition of Mpro protein. Out of sixty-seven terpenoids, Angolensic acid methyl ester, Moluccensin V, Thaixylomolin F, Godavarin J, and Xylomexicanolide A were shortlisted based on their docking scores and interaction affinities (- 13.502 to - 15.52 kcal/mol). The efficacy was validated by the 100 ns molecular dynamics study. Lead terpenoids were within the acceptable range of RMSD and RMSF with a mean value of 2.5 Å and 1.5 Å, respectively indicating that they bound tightly within Mpro and there was minimal fluctuation and stability of Mpro upon binding of these terpenoids. The utmost favorable binding strengths as calculated by MM-GBSA, were of Angolensic acid methyl ester and Moluccensin V with binding free energies (ΔGbind) of - 39.084, and - 43.160 kcal/mol, respectively. The terpenoids showed no violations in terms of Drug Likeliness and ADMET predictions. Overall, the findings indicate that Angolensic acid methyl ester and Moluccensin V are effective terpenoids having strong binding interaction with Mpro protein, which must be tested in vitro as an effective anti-SARS-CoV-2 drug.


Assuntos
Antivirais , Magnoliopsida , Terpenos , Simulação por Computador , Magnoliopsida/química , Terpenos/química , SARS-CoV-2 , Proteases 3C de Coronavírus/antagonistas & inibidores , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , Antivirais/química , Termodinâmica
8.
J Biomol Struct Dyn ; : 1-20, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288734

RESUMO

Globally, 2.3 million women were diagnosed with breast cancer, with 6,85000 mortalities in year 2021; making it the world's most prevalent cancer. This growing global burden necessitates a new treatment option, and plant-based medicines offers a promising alternative to conventional cancer treatment. In this work, screening of phytoconstituents of an indigenous therapeutic plant, Bauhinia variegata carried out for potential regulator of tumor suppressor protein p53. Here, an in-silico analysis was employed to develop more effective, pharmaceutically potent small drug-like compounds that target tumor suppressor protein p53. The methanol and aqueous powdered extracts of Bauhinia variegata were prepared and phytochemically evaluated along with antioxidant property evaluation. The LC50 of methanol (325.33 µg/ml) and aqueous extract (361.15 µg/ml) showed their cytotoxic characteristics. Further, GCMS analysis of both the extracts reveals total 57 secondary metabolites. Among these, four lead compounds; compound 1, compound 2, compound 3 and compound 4 were found to have the highest binding ability (-8.15 to -5.40 kcal/mol) with p53. MD simulation and binding free energy validates these findings with highest binding free energy (-67.09 ± 4.87 kcal/mol) towards p53 by the lead phytocompound 2. Selected compounds exhibit excellent pharmacokinetic features and drug-like characteristics. The acute toxicity (LD50) values of the lead phytocompounds ranges from 670 mg/kg to 3100 mg/kg, with toxicity classes of IV and V. As a result, these druggable phytochemicals could serve as potential lead applicants for triple negative breast cancer treatment. However, more in vitro and in vivo research is planned to produce future breast cancer medicine. HIGHLIGHTSScreening of phytoconstituents of an indigenous therapeutic plant, Bauhinia variegata, for potential regulator of tumor suppressor protein p53.The LC50 of methanol (325.33µg/ml) and aqueous extract (361.15µg/ml) showed their cytotoxic characteristics.GCMS analysis of both the extracts reveals total 57 secondary metabolites. Among these, four lead compounds were found to have the highest binding affinity (-8.153 to -5.401 kcal/mol) with tumor suppressor protein p53.MD simulation along with the Prime MM/GBSA binding free energy validates this discovery with highest binding free energy (-67.09 ± 4.87 kcal/mol) towards p53 by the lead compound 2.The acute toxicity (LD50) values of the lead phytocompounds ranges from 670 mg/kg to 3100 mg/kg, with toxicity classes of IV and V.As a result, these druggable phytochemicals could serve as potential lead applicants for triple negative breast cancer treatment.Communicated by Ramaswamy H. Sarma.

9.
Adv Biol (Weinh) ; 7(10): e2300036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37017501

RESUMO

Epithelial-to-mesenchymal transition (EMT) is responsible for driving metastasis of multiple cancer types including lung cancer. Peroxisome proliferator-activated receptor (PPAR)-γ, a ligand-activated transcription factor, controls expression of variety of genes involved in EMT. Although several synthetic compounds act as potent full agonists for PPAR-γ, their long term application is restricted due to serious adverse effects. Therefore, partial agonists involving reduced and balanced PPAR-γ activity are more effective and valued. A previous study discerned the efficacy of quercetin and its derivatives to attain favorable stabilization with PPAR-γ. Here this work is extended by synthesizing five novel quercetin derivatives (QDs) namely thiosemicarbazone (QUETSC)) and hydrazones (quercetin isonicotinic acid hydrazone (QUEINH), quercetin nicotinic acid hydrazone (QUENH), quercetin 2-furoic hydrazone (QUE2FH), and quercetin salicyl hydrazone (QUESH)) and their effects are analyzed in modulating EMT in lung cancer cell lines via PPAR-γ partial activation. QDs-treated A549 cells diminish cell proliferation strongly at nanomolar concentration compared to NCI-H460 cells. Of the five screened derivatives, QUETSC, QUE2FH, and QUESH exhibit the property of partial activation as compared to the overexpressive level of rosiglitazone. Consistently, these QDs also suppress EMT process by markedly downregulating the levels of mesenchymal markers (Snail, Slug, and zinc finger E-box binding homeobox 1) and concomitant upregulation of epithelial marker (E-cadherin).

10.
Front Pharmacol ; 14: 1120508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909194

RESUMO

The pathophysiology of depression is heavily dependent on inflammation. Evidence suggests that the etiology of depression is linked with NLRP3 inflammasome-induced inflammation. Therefore, blocking the activated NLRP3 inflammasome may be beneficial for treating depression. Due to the limitations of currently available antidepressants, it is necessary to develop novel, safe, and affordable drugs for the treatment of depression. A natural coumarin derivative named 4-methylesculetin (4-MESC) possesses anti-inflammatory properties. However, the role of 4-MESC as an antidepressant has not been elucidated. Therefore, in this study, we explored the antidepressant-like effects of 4-MESC and its underlying molecular mechanism through the modulation of the NLRP3 inflammasome. The docking and molecular dynamic simulation studies revealed that 4-MESC has a higher affinity for the NLRP3 PYD. Blood-brain barrier permeability was confirmed using the SwissADME pharmacokinetic tool. High doses (50 mg/kg) of 4-MESC significantly reduced the immobility duration in the tail-suspension test (TST) and forced swim test (FST) without changing the overall locomotor activity in the female Swiss albino mice that were subjected to lipopolysaccharide (LPS). LPS-induced pro-inflammatory cytokines such as IL-6 and TNF-α were reduced in serum and brain tissues using 4-MESC. 4-MESC's neuroprotective effects are mediated by increased brain-derived neurotrophic factor (BDNF) and decreased cortisol levels. 4-MESC markedly reduced LPS-induced elevated levels of ROS and lipid peroxidation (malondialdehyde levels) and enhanced the superoxide dismutase (SOD) activity and glutathione levels, which revealed its anti-oxidant potential against oxidative stress. 4-MESC diminished the expression levels of NF-κBp65, IL-6, NLRP3, caspase-1, gasdermin D, and IL-1ß in the hippocampus. These findings demonstrated that 4-MESC exhibited antidepressant-like effects by inhibiting the NLRP3 inflammasome. However, other antidepressant mechanisms might also be involved which require further studies.

11.
Biomedicines ; 11(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36979868

RESUMO

OBJECTIVE: The objective of this study was to explore the biological relevance of free fatty acids derived from cow urine DMSO fraction (CUDF) by employing in vitro and in silico approaches. BACKGROUND: Metabolic heterogeneity at the intra- and intercellular levels contributes to the metabolic plasticity of cancer cells during drug-induced response. Free fatty acid (FFA) availability at intra- and intercellular levels is related to tumor heterogeneity at interpatient and xeno-heterogeneity levels. METHODS: We collected fresh urine from healthy cows and subjected it to fractionation in DMSO using drying, vortexing, and centrifugation. Finally, the sterile filtrate of cow urine DMSO fraction (CUDF) was evaluated for antiproliferative and proapoptotic effects in MCF-7 and ZR-75-1 breast cancer cells using routine cell-based assays. Intracellular metabolites were studied with the help of a novel in-house vertical tube gel electrophoresis (VTGE) method to reveal the nature of CUDF components in MCF-7 cells. Identified intracellular FFAs were studied for their molecular interactions with targeted receptor histone deacetylase (HDAC) using molecular docking and molecular dynamics (MD) simulations. RESULTS: CUDF showed a significant reduction in cell viability and cell death in MCF-7 and ZR-75-1 breast cancer cells. Interestingly, FFAs tetracosanedioic acid, 13Z-docosenoic acid (erucic acid), nervonic acid, 3-hydroxy-tetradecanoic acid, and 3-hydroxcapric acid were found inside the treated MCF-7 cancer cells. These FFAs, including tetracosanedioic acid, indicated a specific affinity to HDAC at their inhibitory sites, similar to trichostatin A, a known inhibitor. CONCLUSIONS: This study reports on FFAs derived from CUDF as potential antiproliferative and pro-cell death agents against breast cancer cells. MD simulations hinted at tetracosanedioic acid and other FFAs as inhibitors of HDAC that could explain the observed effects of FFAs in cancer cells.

12.
J Mol Model ; 29(4): 90, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881272

RESUMO

Flavanone compounds are naturally occurring phytochemicals present in most of citrus fruits reported to be a potential anticancer moiety as it majorly participates in the inhibition of the cell cycle, apoptosis, and angiogenesis. Because of poor bioavailability, natural flavanones were not used as therapeutic targets so flavanone congeners were prepared by modifying at B-functional group using compound libraries such as PubChem Database. Cyclin-dependent kinase is primarily activating the cell cycle and potentiating the M phase, in order to control the cell cycle in cancer cyclin-dependent pathway was targeted and potential cyclin D/CDK4 receptor protein was retrieved from Protein Data Bank (PDBID:2W9Z). The binding site was determined using FlexX docking. Flavanone and its congeners were docked against the 2W9Z receptor protein with the docking software FlexX. For validation of docking results, molecular dynamics simulations of the best-fitting molecule were carried out using Desmond Package. Noncovalent interactions like hydrogen bonds, electrostatic interaction, and Van der walls potentials for stable conformations were calculated. Thus, upon docking and molecular dynamics studies, we discovered the potential flavanone derivatives such as Flavanone 20, Flavanone 25, and Flavanone 29, will become a potential drug target in controlling cell cycle arrest and may become a futuristic candidate in targeting cancer.


Assuntos
Flavanonas , Neoplasias , Humanos , Ciclinas , Pontos de Checagem do Ciclo Celular , Flavanonas/farmacologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Ciclina D , Quinase 4 Dependente de Ciclina
13.
J Biomol Struct Dyn ; 41(22): 13314-13331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724473

RESUMO

A cell surface bile acid receptor TGR5 being considered as a novel target for Type II diabetes found to be expressed in various tissues. A major role for TGR5 is to maintain blood sugar levels and increase in energy expenditure. These benefits make it a potential candidate for the treatment of type 2 diabetes, obesity and other metabolic disorder. To date, many novel TGR5 agonists have been synthesized and evaluated in the literature, but very few in silico computational studies have been reported. The discovery of a high-resolution crystal structure of TGR5 in 2020 provides an excellent opportunity for computational screening of potential agonists. In this study, we, therefore, aim to search novel, less toxic TGR5 agonists by iteratively analyzing molecular docking against TGR5 (PDB ID: 7CFN) by means of structure-based virtual screening. The docking score of the designed coumarin derivatives that have been docked successfully varies between -9.4 and -9.0 kcal/mol. The molecular docking and ADMET profile examinations of compounds D1, D5 and D15 revealed that these have a strong affinity for the active site residues of TGR5. In addition, molecular dynamics simulation (MDS) studies have shown the stability of compounds that bind to TGR5. It can be summarized that designed coumarin derivatives seem to have promising activity as TGR5 agonists.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Tipo 2 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cumarínicos
14.
J Biomol Struct Dyn ; 41(23): 14259-14274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36841550

RESUMO

Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.


Assuntos
Humanos , Simulação de Acoplamento Molecular , Proteínas de Membrana , Simulação por Computador , DNA Ligases
15.
Comput Biol Chem ; 104: 107829, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842391

RESUMO

The rapid development of multi-drug resistant (MDR) pathogens adds urgency to search for novel and safe drugs having promising action on new and re-emerging infectious pathogens. Serratia marcescens is an MDR pathogen that causes several-healthcare associated infections. Curbing bacterial virulence, rather than inhibiting its growth, is a promising strategy to diminish the pathogenesis of infectious bacteria, reduce the development of antimicrobial resistance, and boost the host immune power to eradicate infections. Bergamot essential oil (BEO) is a remarkable source of promising therapeutics against pathogens. Therefore, the present investigation aimed to analyze the major phytocompounds from BEO against S. marcescens virulent proteins using in silico studies. The analysis of BEO phytocompounds was achieved by Gas chromatography-mass spectrometry (GC-MS) method. The molecular docking was carried out using the SP and XP docking protocol of the Glide program. The drug-likeness and pharmacokinetics properties (ADMET properties) were analyzed with SwissADME and pkCSM server. The results revealed that the major compounds present in BEO are Linalool (8.17%), D-Limonene (21.26%), and Linalyl acetate (26.91%). Molecular docking analysis revealed that these compounds docked strongly within the binding cavities of Serratia protease and FabI model which in turn curb the pathogenesis of this bacteria. Linalool interacted with the Serratia protease and FabI with a binding energy of - 3.130 kcal/mol and - 3.939 kcal/mol, respectively. Based on the pharmacokinetics findings all lead BEO phytocompounds appear to be promising drug candidates. Overall, these results represent a significant step in the development of plant-based compounds as a promising inhibitor of the virulent proteins of the MDR S. marcescens.


Assuntos
Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Serratia marcescens , Peptídeo Hidrolases , Simulação de Acoplamento Molecular
16.
Curr Drug Discov Technol ; 20(1): e260522205302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35657284

RESUMO

BACKGROUND: Flavanone compounds and their related derivatives are reported in controlling cell cycle, angiogenesis, and metastasis. Phosphoinositide 3-kinases is a major drug target. METHODS: Crystalize structure of Phosphoinositide 3-kinases-Akt complex obtained from Protein Data Bank (PDBID: 3CQW) was selected as receptor protein and the binding site has been identified with PDBSum Database. Flavanone and its derivatives were retrieved using freely available existing drug databases like Drug Bank, Zinc, and PubChem. New derivatives were modified by altering the flavanone at Beta ring position. This modification would help in maintaining stable structural conformation and retaining better anticancer activity. Retrieved Flavanone derivatives from the drug database were docked against 3CQW Protein with the advanced docking tool FlexX. MD simulations of the best molecule were performed with the Desmond package by calculating nonbonding interactions such as electrostatic interaction and hydrogen bond stable and favorable conformations were calculated. RESULTS: These interaction studies would help identify new potential drug candidates with the help of computer-aided drug designing techniques. CONCLUSION: Natural chemicals have received a lot of attention because of their vast range of applications in human health and disease prevention without creating any negative side effects. Molecular docking is an essential approach for drug development since it allows for effective screening of potential therapeutics in a short time. We hypothesized in this paper that natural flavanone and its derivatives may be effective as Akt-1 inhibitors.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Fosfatidilinositóis
17.
J Biomol Struct Dyn ; 41(7): 2698-2712, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156902

RESUMO

Acinetobacter baumannii is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. A. baumannii BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of A. baumannii biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against A. baumannii. The discovery of the high-resolution crystal structure of BfmR provides a good chance for computational screening of its probable inhibitors. Therefore, in this study we aim to search new, less toxic, and natural BfmR inhibitors from 8450 phytomolecules available in the Indian Medicinal Plants, Phytochemistry and Therapeutic (IMPPAT) database by analyzing molecular docking against BfmR (PDB ID: 6BR7). Out of these 8450 phytomolecules 6742 molecules were successfully docked with BfmR with the docking score range -6.305 kcal/mol to +5.120 kcal/mol. Structure based-molecular docking (SB-MD) and ADMET (absorption, distribution, metabolism, excretion, & toxicity) profile examination revealed that Norepinephrine, Australine, Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline phytocompounds strongly binds to the active site residues of BfmR. Furthermore, molecular dynamics simulation (MDS) studies for 100 ns and the binding free energy (MM/GBSA) analysis elucidated the binding mechanism of Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline to BfmR. In summary, these phytocompounds seems to have the promising molecules against BfmR, and thus necessitates further verification by both in vitro and in vivo experiments. HighlightsBfmR plays a key role in biofilm development and exopolysaccharide (EPS) synthesis in A. baumannii.Computational approach to search for promising BfmR inhibitors from IMPAAT database.The lead phytomolecules such as Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline displayed significant binding with BfmR active site.The outcome of BfmR binding phytomolecules has broadened the scope of hit molecules validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Acinetobacter baumannii , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Acinetobacter baumannii/metabolismo , Nordefrin/metabolismo , Desenvolvimento de Medicamentos
18.
J Biomol Struct Dyn ; 41(17): 8571-8586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36282056

RESUMO

In a number of human cancers, both cycloxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) are up-regulated and co-expressed, promoting cancer cell proliferation and angiogenesis. Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natural polyphenolic phytoalexin found in a variety of plants that influences various signal-transduction pathways which control apoptosis, cell growth and cell division, metastasis, angiogenesis and inflammation, and has an impact on cancer stages ranging from initiation to progression. In this work, molecular docking and molecular dynamics simulation method are employed to design resveratrol derivatives for COX-2 and 5-LOX enzymes. By attaching several functional groups on four different places of the resveratrol scaffold, the R group enumeration approach was employed to build four libraries of resveratrol derivatives. Thus, R group enumeration is done to focus on the enhancement of potency of compounds and other chemical characteristics like solubility. Drug-like filters such as REOS 1, 2, 3 and PAINS were applied to the libraries, generating a total of 5557 compounds. Drug-like filters such as REOS and PAINS-1, 2 and 3 were applied to the libraries, generating a total of 5557 compounds. All of these compounds were docked with both enzymes using the Glide SP and XP docking methods. Enrichment calculations were performed using 40 compounds from XP docking along with resveratrol, and 1000 decoy compounds from the DUD-E database to validate the docking protocol. The stability of the complexes was further studied using molecular dynamics simulation, radius of gyration, MM/GBSA, H bond monitoring and electrostatic potential surface (EPS). ADMET properties of compounds were studied using SwissADME and pkCSM server.Communicated by Ramaswamy H. Sarma.

19.
Drug Res (Stuttg) ; 73(1): 30-39, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36138546

RESUMO

Aurora kinase is a group of enzymes that belongs to a serine-threonine family and plays a critical role in cellular division. Aurora Kinase A is overexpressed and distributed beyond the nucleus and is involved in tumorigenesis. Flavones are a class of flavonoids that are present in plants that show anticancer activity. Similar compounds of 2'Fluoroflavones are retrieved from the PubChem database. Then drug-like filters viz. REOS and PAINS were applied to remove toxic compounds using Canvas software, resulting in 3882 compounds being subjected to Glide docking with Aurora kinase A. The lead compounds were selected on the merit of hydrogen bonding, salt bridge, as well as pi-pi interactions, 4-(6-Fluoro-4-oxychromen-2yl) benzoic acid, has been found one of the best molecules from docking studies. The binding mode of the lead compound with AURKA reveals that the amino acid residues viz, Lys162, Ala213, and His280 are more important for binding with the binding affinity of -11.760 kcal/mol. The molecular dynamics simulations of 100 ns were done, which shows the mean RMSD value of 1.77 Å for all 3 complexes of the protein and Fluoroflavone and its analogs. This shows that Fluoroflavone and its 2 best analogs are tightly attached to the active sites and thus have conformational stability. Our finding suggests that 4-(6-fluoro-4-oxochromen-2-yl)benzoic acid and 4-(4-Oxochromen-2-yl)benzoate can be further used in vitro and in vivo experiments and can probably serve as a novel drug for cancer treatment.


Assuntos
Aurora Quinase A , Simulação de Dinâmica Molecular , Aurora Quinase A/química , Domínio Catalítico , Bases de Dados de Compostos Químicos , Ácido Benzoico
20.
Mol Divers ; 27(6): 2867-2885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544031

RESUMO

Peroxisome proliferator-activated receptors (PPAR)-α, a ligand-activated transcription factor stands out to be a valuable protein target against cancer. Given that ligand binding is the crucial process for the activation of PPAR-α, fibrate class of synthetic compounds serves as potent agonist for the receptor. However, their serious side effects limit the long-term application in cancer. This emphasizes the dire need to identify new candidates that would exert desired activation by abrogating the adverse effects caused by synthetic agonists. Natural dietary products serve as an important source of drug discovery. Hence, the present study encompasses the investigation of the role of natural plant phenolic compounds: kaempferol, resveratrol, and quercetin and their 8708 derivatives by the means of computational pipeline comprising molecular docking and molecular dynamic (MD) simulation techniques. Docking calculations shortlisted potential candidates, namely 6-cinnamylchrysin (6-CC), resveratrol potassium-4-sulfate (RPS) and 6-[2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxyhexyl nitrate (DHOON), and derivatives of kaempferol, resveratrol, and quercetin, respectively. 6-CC, RPS, and DHOON manifested better affinities of - 32.83 kcal/mol (Ala333, Lys358, His440), - 27.22 kcal/mol (Tyr314, Met355), and - 30.18 kcal/mol (Ser280, Tyr314, Ala333), respectively, and were found to act as good stimulants for PPAR-α. Among these three compounds, 6-CC caused relatively least deviations and fluctuations analyzed through MD simulation which judiciously held responsible to attain most favorable interaction with PPAR-α. Followed by the binding free energy (ΔG) calculations using MM-GBSA confirmed the key role of 6-CC toward PPAR-α. The compound 6-CC also achieved high drug-likeness and pharmacokinetic properties. Thus, these findings stipulate new drug leads for PPAR-α receptor which abets a way to develop new anti-cancer drugs.


Assuntos
Neoplasias , Quercetina , Simulação de Acoplamento Molecular , Resveratrol/farmacologia , Quercetina/farmacologia , PPAR alfa/agonistas , PPAR alfa/metabolismo , Ligantes , Quempferóis/farmacologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...